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A WIND-TUNNEL TEST TECHNIQUE FOR MEASURING THE DYNAMIC ROTARY STABILITY
DERIVATIVES AT SUBSONIC AND SUIWRSONIC SPEEDS ‘

By BBNJAMINH. BEAM

SUMMARY

A method h dacribed for nwcmuringthe dynumic stability
derivativesof a model airplane in a wind tunnel. The char-
acteristicfeatures of thti 8y8tem are thd 8ingle-degree-oj-frwdOm
osm”lik.tti were used to obtiin combina-timwof roUing, yaw
ing and pitching ?n&ms; &u! h 08&’k$bn# were mc?kd
and czmtrolledby ve+?a%yfeedback which permih%doperm%n
under conditions unjamra$le for more conventional types of
oscillahy testing; and W dai!uproce88ingw gredy 8impli-
jied by W-singanalog comptier elemem%in the strain-g~e
circu~.

The system ok.scribedh primarily for mea-wrement of the
damping derinztivtx0,, (dampi~ in roll), Cm,+ C.i (damping
in pitch), c.,– Cwj (dampin#in yaw), and tti cro8sderizxztive.s
Cl,– C,j (roUing moment due to yawing) and Cm, (yawing
moment dw to rolling). The met%odof twting also permii%
meawrement under 08ciUuJ!oryconditions of the 8t4u$icderiva-
tives Cti (rolli~ moment due to &lip), (?V (yawing nwmt
due to sio?eslip), and Cma(@!.chiw mom.enidue to angle of
aituck). AU these derivativesare of parh%uilzrimportarwein
estimating the short-period osoiLIMQqImotions of a rigid
airplam.

A wnulinumber of expw”menla.1oh% are includedto L?bwtrate
the general scope of Tewl.t.sobtainablewith thti system.

INTRODUCTION

One important problem in the dynamic motions of air-
planes is the nature and the stability of the oscillatory modes.
In measuring the dynamic stability derivatives which apply
to these motions there are certain advantage in employing
oscillation methods in a wind tunnel, and the development
of such methods has always been attractive to investigators.
Most of the early measurements of dsmping in pitch were
made from oscillation tests of a model in a wind tunnel.
Damping in roll and damping in yaw have alsobeen measured
in this way but, in general, experimental diiliculties have
prevented the wide application of this method to the lateml
motions. This is particuhdy true in the case of the cross
derivative, yawing moment due to rolling, and rolling
moment due to yawing, although in one recently developed
method (ref. 1) the yawing moment due to rolling has been
successfully measured using a twodegre~f-freedom
oscillatory technique.

Most of the studies of the lateral derivatives have been
made on the basis of steady turning or rolling motions.
Theoretical calcuhtions of the derivatives are kugely based
on this assumption. The steady turning or rolling flow
technique has been used in the systematic studies of the
lateral derivatives in the Langley stability tunnel (e. g., refs.
2 and 3). Curved or rolling tlight is approximated in the
teat section of this wind tunnpl by causing the air to follow
a curved or spiral path past a fixed model. At high speeds,
the rolling derivatives have been measured by steadily
rotating a sting-mounted model in a wind tunnel with a
dynamometer and measuring the damping in roll, yawing
moment due to rolling, and the side force due to rolling.
These methods and other techniques have been described
and referred to in various NACA publications on the stability
derivatives for airplane and missile configurations.

The purpose of this report is to describe an oscillation
technique for mewu-ing the lataral and longitudinal dynamic
stabili@ derivatives in a wind tunnel. It was developed
primarily for testing at high subsonic or supersonic speeds
and for this reason the features are believed to be of
special inter=t. One of these is the singledegreeaf-freedom
oscillatory system in which various components of pitch,
roll, and yaw were obtained by varying the axis of oscilla-
tion. Second, the forcing system comprised a feedback
loop in which velocity feedback was used to excite and con-
trol the amplitude of the model oscillation. A third feature
is a system of strain-gage data processing in which electronic
analog computer elements were used in measuring the ampli-
tude and phase position of the oscillatory strain-gage deflec-
tions. The advice and assistance of the Ames instrument
development branch w-as extremely valuable in developing
this system of data processing.

The test apparatus is capable of mewuring the moment
derivatives which mise from angular motions of the airplane.
This includes the rotary damping derivatives C,p, Q+
Cm;, and C%–C.; ; the cross derivatives C% and CZ,–CZ);
and the displacement derivatives CZB,Cw, and Cm=. These
derivatives are of particuhw importance in estimating the
shorbpariod oscillatory motions of a rigid airplane.

Two systems of uw are used in this analysis. The sta-
bility system of axes with the positive directions of moments
and angles referred to this system are illustrated in figure 1.
The oscillation wxs used for wind-tunnel measurements
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are illustrated in figure 2 and defined with respect to the
stability mes by a set of direction cesin=. Primes are used
with aerodynamic moment and axis designations referred
to the oscillation system of =es.

The various stability derivatives are defied as follows:

2 hL 2V

2 aM’
c.; — —pVWb au

z)’ 2 aL’
cl!

u pVWb :b
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The following symbols are used in the report:

}
A, B, * * *, direction cosines between primed and unprimed
E. J axes. .
I

K

L
M
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P

R
s
T
v
b
z
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moment or product of inertia, depending on
subscript, positive where negative moment
redtls from positive acceleration, slug-ft2

mechanical spring constant, positive where
negative moment rw.dts from positive dei3ec-
tion, ft-lb/radian

aerodynamic rolling moment, ft-lb
aerodynamic pitching moment, ft-lb
aerodynamic yawing moment, ft-lb
mechanical damping-moment coe5cient, posi-

tive where negative moment results horn
positive velocity, ft-lb see/radian

resistance, ohms
wing area, Sq ft
torque, ft-lb
air velocity, ft/sec
wing span, ft
mean aerodynamic chord, ft
voltage, volts
frequency of sinusoidal oscillation, cps”

output
trausfer function, -input
galvrmometer current, amp
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FIGURE I.—’rhe stability ayatem of ases is an orthogonal system of axes
having its origin at the center of gravity and in whioh the z axis is in
the plane of symmetry and perpendiuuku to the relative wind, tho x
axis is in the plane of symmet’ry and perpendicular to the a rmia,and
the g axis is perpencHcularto the plane of symmetry.
the positive directions of motione and moments.

strain-gage calibration constant,
load

rollimgveloci~, radians/see
pitching velocity, radirms/sec
yawing velocity, radirms/sec
time. sec

Arrows indknte

amp/volt/unit

,
stability system of axes, detined in figure 1
system of axes used for oscillation teats, clofined

with respect to the stability axea by the direc-
tion cosines

angle of attack, radians
mwn or static angle of attack, deg
angle of sideslip, radians except where noted
pitch fmgle, radians
roll angle, radians
yaw angle, radians
angle of rotation of model about z’ axis, radians

except where noted
small anguhw displacement about y’ or z’ axis,

radians
direction anglea, deiined in figure 2, deg
phase angles of u, T=’, and e,’ with respect to nn

arbitrary reference
air density, slugs/cu ft
circular frequency of oscillation, 2rrf,rdims/sec
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FIGUSE2.—The orientation of the oscillation axes, the z’, v’, # systeq
is obtained by assuming an orthogonal system which is originally
coincident with the stability system at zero angle of attack and with
tho same positive directions for forces, moments, and motione aa being
suocesaively rotated about the v axis by an angle q and the z axis by
an anglo A.

&J~ wind-off circular frequency of oscillations, ra-
dians/seo

(“)
d( )

03

c“)
d’( )

O?&
(-) maximum value of a sinusoidally oscillating

quantity ( )
A( ) incremental value of a quantity ( )

Subscripts define the particular axis or motion to which the
genmd symbol applies.

THEORY

SINGLI?-DEGREZ-OF-FREJ3DOMOSCULATORY SYSTEM

Tlm general dynamic motion of a rigid airplane with no
moving control surfrLce9requires six difhrential equatiom.
Three of these define translation and three defie rotation
about the center of gravity. If the center of gravity of a
model airplane is tixed in a wind tunnel, the equations involv-
ing translation can be eliminated and the motion is detlned in
terms of rotary motions and derivatives by three equations.
The system can be further restrained so that rotation occurs
about one ruhitrary fixed axis only. In this case the motion
is defied by one equation even though simultaneous rolling,
pitching, and ymving motions maybe involved.

Assume an orthogonal coordinate system, the x’y’z’ system
(fig. 2), the origin of which is at the center of grrmi~ of the
model airplane and in which rotation of the model is always

about the z’ axis. Equilibrium requires that the summation
of the moments about the z’, y’, aud z’ axes be equal to zero.
The equation for small angular oscillations about a static
equilibrium condition can be written in terms of a single
variable

–I&&-Pd&&u+ AL’+ TZI=O (1)

The sign convention of iigure 2 require9 that if I<.’, Pd,
and KiJ are considered positive quantities, their respective
moments must be prefked by a negative sign since they op-
pose the motion. The quantity AL’ is the sum of all aero-
dynamic moments about the axis of oscillation arising from
angular deflection, velocity, acceleration, etc., about the static
equilibrium condition. The aerodynamic moments due to
angular acceleration and higher-order terms are generally
neglected in stability calculations. permitting the assumption
that

AL,=?&+bL’ -
XU (2)

( )=; pV%’b z; C@Cl:G (3)

and equation (1) could be written

( )(Id=$+ P+ pVSb2Cl: c+ I& pVWbC,:
)

U=T< (4)

It is apparent from the left-hand side of equation (4) that
C,; is an aerodynamic damping coefhcient and that a nega-

tive value of”Cl{ would result in a positively damped oscilla-

tion. A negnti~e value of the coefficient C,: would result in a
positive restoring moment about the axis of oscillation. ‘l’he
sign convention is thus parallel to that of the stability deriva-
tive about the stability axes.

Equations expressingthe equilibrium of moments about the
y’ and z’ axes for small oscillations about the x’ a---iscan also
be written

—Iz@+ AM’-KdEn~=O (5)

–l.V&!-AN’–KiW=O (6)

Equations (5) and (6) can be written in this simple form only
if eti and w are sufficiently small compared with u that their
effects are negligible in equations (l), (5), and (6) except for
the terms KtiEJand K<w. This is accomplished by limiting
c~ and w to very small values but making Kr and Ki very
large. In other words, the model would be relatively easy
to deflect about the x’ axis but very stiff about they’ and z’
axes. From a development similar to that of equations (3)
and (4) it can be shown that

The values of the aerodynamic coefficient in equations
(4), (7), and (8) will change with the orientation of the oscilla-
tion axes in the wind tunnel and the attitude of the model
with respect to the air stream. These changes are related to
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changes in magnitude and relative contribution of the sta-
bility derivatives, ordinarily measured about the stability
axes defied in &ure 1. The geometric relation between the
oscillation system of axes (the z’y’s’ system) and the stability
axes (the xyz system) is completely defined by tne direction
cosines between the two systems. T&se can be symbolized
in the following matrix form

t Y’ “

x?
A D

Y TBE

2’

(9)

-where,for example, the cosine of the angle betwean the y and
z? axes is E.

The numerical evaluation of these direction cosines is
somewhat complicated since the stability axes do not remain
fixed with respect to the oscillation axes as the angle of attack
is changed, as is apparat tim a study of figures 1 and 2.
It will be shown later in the appendix that certain simplificat-
ions are possible in numerical calculations by a less direct
approach through a set of model axes. Since, however, in
the present disction the direction cosines are considered
only in symbolic form, it is not neceswq to introduce this
additional step.

Small angular motions about the axis of oscillation can be
resolved into component motions of roll, pitch, and yaw
about the stability axes. The relative maggtude of each
component depends on the direction cosine between the z’
axis and the roll, pitch, or yaw axes, and, with the approxi-
mations sin u= u, cosine u=l

AP=Ar r+p=&

AO:=& d=q=ll;

A#= Cu J=r=c;

(lo)

The moments about the stabili@- ax= can be expressed in
terms of the aerodynamic stability derivatives

For straight ilight, as in the wind tunmd, a=O and S= –~.
The aemdpamic moments can then be referred back to the
oscillation system of axes through the direction cosines.

AL’=A(AL)+B(AM) +c(~ (14)

AM’= D(AL)+E(AM)+F(AN) (15)

AN’= G(AL)+H(AM)+J(AN) (16)

Thus, the aerodynamic moments indicated in equa~ions
(l), (5), and (6) for oscillation about an arbitrary axis are
defined in terms of moments about the stability axes by
equations (14), (15), and (16). The aerodpamic coefficients
which depend on the amular velocitw of the model can bo
derived & terms of the s<abili~ deri~ativcs as

C.:=ADC,P+CD ~Clr–Clbj+EB ~ (cmQ+c.&)i-

Those coeflic
become

(17)

(18)

(19)

entswhich depend on displacement of the model

2 aL’
cl;=— ——ACClb+B2 ; C.=—C2CnbpVgSb & (20]

c J= – QCC,P+EB ; C.=–JCC.b*U (22)

In equation (17) Cl; is the mrodpamic damping coefficient
measured about the axis of oscillation in the wind tunnel,
If the x’ axis coincides with the x rmis,the oscillation would
be pure roll. In this case Ag=l and AO=B2=O=0 so
the measured damping c.oeflicientwould be 0$, the damping-
in-roll coefficient. Similarly, a pure pitching or yawing
oscillation would result in the measurement of damping in
pitch or damping in yaw.

In general, one stability derivative can be obtained from
each separate physical measurement. In equations (17),
(18), and (19) there are eight stability derkmtivea which
depend on angular veloci@; however, these derivatives form
only five independent terms. The derivative O.c always
appears with Cm; in the above since, for the pure rotary
motions considered, q is always equal to d. (Seo ref. 4,)
Simihrly, since r=— Bin a twt of this type, Cl,–O1~ sbppmm
as one term and (Y%—0%3as another. The evaluation of
these five terms (C,p, O.p) Cmq+C.&, O1,–Cllb, and C.,–
C. ) require3 five umque measurements.

k quations (17), (18), and (19) can be considered in a
purely formal way as the basis for a system of equations
containing the unlmown stability derivatives. Assuming
that five vahms of Cl:, Cm:,or Cn; are avaiIable from wind-
tunnel measurements, along with the appropriate direction
cosines for the wma about which the measurements wore
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made, a system of five equations could be formed. These
equations could then be solved simultaneously for the five
stability derivatives, providing the equations are mathe-
matically determinate.

The necessary values of C$ Q, or Cs: which lead
to the velocity derivatives and 02;, C+ or Cn: which
lead to the static derivatives are obtained from physical
measurements of the model oscillation through equationa
(4), (7), and (8). Measurements can be made of the frequency
of oscillation @, the input torque 5%, the oscillation ampli-
tude u, and the small angular deflections w and %?. There
is considerable latitude in the choice of sxes of oscillation
nnd the particular quantities to be measured within the
gened confines of mathematical determinateness of the
stability derivatives. Note, however, that v and w are
inherently more difEcult ta measure than u. The d
displacements and high stitlhessrequired about they’ and z’
axes to maintain the validity of equations (4), (7), and (8)
impose a limitation on the accuracy of measurements about
these axes. Friction, backlash, and interaction become of
incrensiug importance as the displacement is reduced. Some
measurements must be made in conjunction with large static
pitching moments or aerodynamic disturbances of a random
nature and these factors will affect the design of the appara-
tus and the accuracy of the system. These factors, and
the methods used to relate the measurements of !&, u, u, ~
and cgt to the derivativea (?z~, U=;, etc., are discussed in
subsequent sections. The direction cosines which relate the
derivatives Oz!, On~, etc., to the various stabili~ deriva-
tives in equati&s (17) through (22) are given in the appendix.

FZEDBAOK CONTROL

As indicated in the pre&g section, measurement of the
aerodynamic derivatives depends upon an w.udyaie of a
single-degree-of-freedom oscillation defined by equation (4
repeated here for convenience.

( )(
-~ VSb’Ct: ;+ E& pVWb 01:~ u=T&Ii.@+ P.’ 4 P

(4)

In the case of a free oscillation T~ would become zero and
the oscillation would be a dsmped sinusoid. Use of this
method is generally limited to test conditions which would
not result in oscillatory instability as there is no oontml over
the amplitude once the oscillation is initiated.

For the forced oscillation Tzj in equation (4 is a sinusoidal
function of time. One case of interest is where the frequency
of the applied torque corresponds to the undamped natural
frequency of the oscillatory s@em. At this frequency tie
inertia momenta balance the restoring moments and the
final amplitude after the decay of initisl transients cmre-
sponds to a balance between the damping moments and the
applied torque. The maximum angular Vdocity of oscill-
ationcan be obtained with a minimum of input torque at
this frequency, se the entire input is used to ovemome the
damping. It is thus a desirable operating point both from
the standpoint of power requirements and accuracy in
measuring the damping. h

One disadvantage with the forced-cxdation system oper-
ating at the reacnsnt frequency is that, as with tie free-
oscillation system, testing cannot be conducted where oscilh
tbry instability is encountered. At high Mach numbers and
high angles of attack where minor changes in test conditions
may produce changes in the aercdynsznic derivatives, a
steady+tate oscillation is very d.iihcult to maintain. h
situations such as this, feedback control of the oscillation
shouId be considered as it prcvides a means for automatically
stab- the amplitude and the frequency of the oscillation
for any variation of damping, either positive or negative,
within the capacity of the forcing system.

The system of feedback control used in the present ap-
paratus evolved from unsuccessfd experiments with the
forced+scillation technique described above at high subsonic
Mach numbers. After the development of the feedback
system it was found that Bratt, Raynmr, and Miles in
-d had used a similar technique in 1!342but the results
of their experiments are not generally available. The
principle of operation is similar to that of the amplitude-
stabilized feedback oscillator.

The osdlatmy system was formed by the momant of
inerti of the model and the stiffness of the restoring springs.
Torque was applied to this system in the present case through
a linkage with an electromagnetic shaker. It is convenient
to think of the shaker system as a transducer which converts
an electrical signal input into a tcrque. A strain gage
indicating the angular deflection of the model wnverted the
oscillation amplitude into an electrical aigmd. Feedback
was accomplished by using amplified voltage from the strain
gage as a eource of electrical signal to the shaker. VeIocity
feedback was used in this case and the strain+yge signal of
oscillation amplitude was differentiated electronically before
being introduced into the shaker.

Thus, for a system with velocity feedback

T&=gG (23)

and equation (4)could be written

If g and the aerodynamic derivatives are constants, equation
(24) is linear. The case of int-t is where

P& pVSbaC1’–g=o (25)G

The oscillations are sinusoidal and of conetmt amplitude.
The oscillation frequency is the undamped natural frequancy,
@VtUl by

l-l

(27)

The peak amplitude of the oscillation, ~, cannot be defined
independently of initiaI conditions if the terms in equation
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(24) are constant as assumed. Amplitude stabilization would
require that the iinal oscillation amplitude be independent
of the initial conditions in the same sense that a “limit cycle”
is independent of the starting .mnditions in a nonlinear
oscillatory system. The transfer function, g, of the feedback
loop can be designed to vary with oscillation amplitude in
such a way as to produce positive feedback at low amplitudes
and negative feedback at high amplitudes with a limit cycle
at some intermediate amplitude. This type of stabilization,
however, would appear to conflict with the requirement that
g &d the other coefficients in equation (24) be ccnstants for
sinusoidal motion. These conflicting requirements can be
satisfied within practical limits by allowing g to vary with
oscillation amplitude, but at such a slow rate that it remains
essentially constant through one cycle of operation.

A rudimentary circuit of a quasi-linear element which
could be inserted in the feedback loop to stabilize the ampli-
tude of oscillation is shown schematically in figure 3 (a)
along with a sketch of its transfer function, figure 3 (b). The
thermistor is the nonlimxw control element. It is charac-
terized by n high negative temperature coefficient of resist-
ance and as current, either alternating or direct, is passed
through it the resultant heating causes its resistwwe to
change. The thermal and heat-transfer characteristics of
the thermistor determine the time required to reach a new
resistance following a change in current. There are many
variations of the principle illustrated in figure 3 which would
produce an equivalent result and which can be found in the
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~–Ccmtrol potentiometer /

i’\
\\’ \

.
0 0

\

Input ‘\

\

output

o .& \ o

(0)

t
al
>.-

GI
8

output o

F
al
>.-
5
CJ
z

1

(b)

.
‘Thermistor

\

\

/?2. 3r?, Operoting mnge for an

oemdynomicolly stoble configumtion

R2= 2R,

\
R2.RI t

Peak input voltoge

‘1
Aemdynomicolly unstoble

(a) Simplitled sohematic.
(b) Transfer function for seveti fied positions of the control

potentiometer.

FIGURE3.Almplified oharacteristh of the amplitude-control circuit.
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(b) Computing system.

FmuRE 4.-Blook diagram of the excitation and computing systems

literature on amplitude stabilization of electronic osoillatora.
A schematic diagram of the complete feedback control

loop is shown in figure 4 (a). With this system tlm input
torque, given by g;, can be made equal and opposite to the
damping moments acting on the model for any valuo of G
by an adjustment of the potentiometer in figure 3 (o). I?or
amplitudes less than the desired amplitude the damping
moment will be less than the applied torque and oscilhtiom
will build up from rest. For amplitudes greater than
desired, the damping moments will be greater than tho
applied torque and oscillations will decrease. Tlm O~Y

stable operating point is where

P.I~ pVii’b3Cl:—g=O (28)
u

md this cm be shown to apply whether the aerodynamic
hmping is positive or negative.

ANALOG COMPUTING SYSTEM

By use of the feedback control system described, tho
static derivatives C~a, 09, and Cle can be determined from
~quation (27) and an accurate measurement of the change
h oscillation frequency between the wind-on and wind-off
test conditions. The equation for C,; can be obtained from
3quation (27)

cl:=
+Hw-’l

(29)

J!hreevalues of C,; are required for difFerentorientations of
be axis of oscillation. Inserting these valuw into equation
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(20)with the appropriate direction cosines provides three
equations for the urdmowns Cm=,C%, and Cl@.

Measurement of the velocity derwatives is more diilicult.
Early attempts to record the output of strain gages witn an
oscillograph and then to measure the amplitude and pbase
position of each trace proved to be an espensiva and time-
consuming task even with the aid of automatic digital com-
puting equipment. The analog computing system discussed
herein performs the same mathematical processes as the
digital computing machine, but doea so at the time the data
m taken and results in a considerable saving in the time and
expense devoted to data processing.

The measurementsrequired in this case for a determination
of the velocity derivatives were u, TZ?and either e~zor G*,.
Each of these time-varying quantities can be represented as
a I?ourier series in @ by the general expression

F(.t)=%+al cm ut+bl sin at+ . . . a. cos Wt+bX sin nat
(30)

where u is the fundamental frequency of oscillation. Higher-
ordcr terms are always present to some degree because of
bufbting of the model, wind-tunnel vibration, etc.; however,
onIy the fundamental component in F(t) is of interest. The
amplitude and phase position of the fundamental can be
determined from the Fourier coefficient~, defined by .

J
lral=- F(tj COS Ut d(d) .
T -.

b,=~ J“ F(t)sin@td(d)T -r

(31)

(32)

If strain-gage
mtus in such a

bridges are located in the oscillation appa-
position as to indicate u, Tti, and c~~,the

output of each gage would be proportional to the product of
applied voltage and gage deflection. lhtroducing a voltage
into each gage of 7 cm ut result9 in a gage output current of

i=kzF(t) cog @ (33)

&in equation (30), o is the fundamental frequency of oscil-
lation so that upon expanding, equation (33) becomes

(
i=ki? G COSut+~+~ COStit+bl Sill@t COS@t+ . . .

)
(34)

A well-damped deflection galvanometershaving a time mn-
2r

stant much greater than ; will not respond b currents of

fundamental frequency and above. Its deflection will be
proportional to the average galvanometerscurrent, given by

(35)

With equations (34) and (35), an expression for al can be
obtained in terms of the average galvanometerscurrent

2;.,
“=E

(36)

Wherein ~ and Z can be measured directly at the time of
the test and k can be obtained from a static calibration of
the strain gage. %nularly, bl can be measured using a sine
wave of voltage in place of a cos”mewave. The 90° phase
separation between the sine and cosine voltages was obtained
in this case using the input and output, respectively, of an
electronic integrator. This integrator and other active com-
ponents in the computing circuitry consist essentiallyof high
gain d-c amplifkwsin which the input and feedback imped-
ances to each amplifier determine its speci.iic function.
Similar components were used in the feedback loop described
previously.

A schematic diagram of the computing system used is
shown in figure 4(b). The signal source for the sine and
cosine voltagw was the strain gage, indicating oscillation
amplitude, that waa used to excite the feedback loop. The
reversing switch was used to apply the sine and cosine
voltages alternately to each gage. These voltages were
measured simultaneously with each reading by means of the
rectiiier circuits el and e2and the galvanometers. The feed-
back loop through the attenuator was used to suppress any
unusually large variations in direct current through the
integrator, and the capacitors prevented this direct current
from appearing at the output.

The in-phase and out-of-phase components, al and bl,
respectively, of TZI,Ci, EZI,and u are used to determine the
maximum amplitude and relative phase position of each.
Only the component of T.J, q, and cz in quadrature with
the amplitude is required to calculate the mechanical damp-
ing and the velocity derivatives. For emunple, with the
notation

u= F sin (Wt+p)

Tzf=~zt sin (ut+v)

~=z~ sin (d+g)

the velocity coefficients for each oscillation
calculated from equations (4) and (7) as

condition can be

(37)

(38)

Four values of Cl; and one of Cm; were required in this

caae which, with equations (17) and (18), yielded the five
rotary derivativea CIP,C~P,Cmei-Cm.,Cl,—Clb,and Cm,—C*j.a

OPERATION

DESCRIPTIONOF APPARATUS

The oscillation mechanism necessary for the dynamic tests
was housed in a sting assembly which was matched to the
dynamic model and the wind-tunnel model support in such
a way that it was interchangeable with the stings normally
used for static testing. It was thus possible to measure the
static force and moment characteristics and the dynamic
stability derivatives under identical teat conditions.
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FIWJB~5.—Model airplane installed on oscillation mechaniam in wind-
tunnel test Seotion.

A model airplane mounted on the oscillation equipment
in the wind tunnel is shown in the photograph, figure 5. An
electromagnetic shaker was housed in the enlarged portion
of the sting downstream of the model airplane. Special
model construction was required to obtain the necessary
strength with a minimum of weight since a reduction in
weight simpllkd many of the other design problems, par-
ticularly those relating to the supporting springs. Designed
for a wing loading at high Mach numbers of approximately
400 pounds per square foot, the weight of the model in
figure 5 is approximately 5 pounds per square foot of wing
area.

A generaI view of the electronic equipment needed outside
the test section is shown in the photograph, figure 6. The
console on the right in the photograph is the power supply
for the electromagnetic shaker housed in the model support-
ing sting. The panel rack oh the left contains a counter for
measuring frequency and the various electronic feedback
and computing elements illustrated in the block diagmms,
figure 4. The galvanometersaud read~ut system, not shown
in figure 6, is the same as that normally used for static tests
with a strain-gage balance.

Two oscillation mechankms were built, one for pure pitch-
ing or yawing oscillations in which the oscillation axis was
perpendicular to the longitudinal axis of the supporting
sting, and one for combined relling and pitching or rclling
and yawing in which the axis of oscillation was inclined 45°
to the longitudinal axis of the sting. The essential features

of the9e mechankma are shown in figures 7, 8, and 9. The
crossed flexure pivots position tie model and provide the
spring restraint for the oscillatory system. The axis at
which the flexure pivota cross is the axis of oscillation.
Several sets of flexure pivots of d.iflerent thicknws wi3re
prcvided which permitted testing at frequencies from ap-
proximately 3 to 10 cycles per second. Each of these
mechanisms could be driven by a ihker with a reciprocating
motion of the push rod.

The mewmrement of eti~and ezrrequired special considwn-
tion as these quantities are more difEcult to measure than
a, T=?, and u because of the small deflections involved.
An examination of equation (17) shows that all the stability
derivatives which depend on angular velocity of the moclol
influence the dsmping of the oscillation. The four groups of
terms which appear in equation (17) can be resolved into
measurements of u, T=,, and u in a series of four tests in
which all test conditions remain constant except for changes
in orientation of the axis of oscillation. In other words,
CmC+Cm&,C’%, and C%– Cmdcan be resolved by mmaure-
ments of damping, but only the sum of the cross derivatives
C%+CG– C,b can be determined in this manner. At load

one additional measurement of erl or cl, representul by
equations (18) and (19), is required to resolve these two
derivatives.

.

lr 1

~1!
11111....... . -*.4..t.<S --...A-- [,1

r

FIGURE6.—General view of electronic fesdback and oomputLng equip-
ment. used for the osoiflation tests.
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I?mmm 7.—Oscillntion mechanism with oblique axea showing the oro.w.-
torque gage used in early teats.

I?igure 7 represents an early version of the oscillation
mechmism in which e~’ was measured to obtain C? in a
rolling and pitching oscillation. Accuracy was expected to
be a maximum here because moments due to other aerc-
dynwn.ic derhtivea would have little effect on e~~. This is
apparent on substituting the direction cosines for a rolling
rmd pitching oscillation from the appendix into equation
(18). The strain gage indicating ~~ was of the unbended
type since the angular deflection about the y’ axis was
+0.0005 radian or less. The deflection was held within
the above limits by the radial flexureaindicated as the crow-
torque restraint in figure 7. This gage was used for testing
only during rolling and pitching oscillations and was mechan-
ically disconnected for other orientations.

This mechanical arrangement of the oscillation mechanism
proved workable but experience gained over several months
of wind-tunnel testing revealed some undesirable character-
istics which could be corrected by redesign. One di.fliculty
was duo to an interaction between the cross torque and the
applied torque. Analysis showed that deflections of the
trunnion to which the crossed flexure pivots and the croea-
torque restraint were attached could result in an indicated
Cgl. It was established horn a static calibration that ap-
proximately 6 percent of a moment about the z’ ti was
measured as a moment about the y’ axis because of this
interaction, and thus a correction to the measured values of
Um’~was necessary which amounted to approximately 6

pmcent of the mensured values of Cl!.

One other diiliculty with this syste~w-as due to unbalanced
static aerodynamic moments, which do not appear in the
dynamic equations because they remain constant, but which
me also supported by the mechanism. The largest of these
moments is nody the pitching moment, and the range
of tmglea of attack for testing in the pitching mode is thus
limited by the permissible angular deflection of the flexnre
pivots caused by the static pitching moment. It is seen
that the cross derivative C% is measured in a combined
rolling and pitching mode in which the test range of angles

of attack is limited by these conditions; whereas the remain-
ing lateral-directional derivatives are measured in a rolling
and yawing mode or in a pure yawing mode and are thus not
limited in angle-of-attack range by aerodynamic pitching
moments.

A consideration of these features of the method for measur-
ing C% led to the design of an alternative arrangement in
which the other cross derivative, C4— Cl~t was measured.

This was done by measuring the rolling moment in a yawing
oscillation. This rolling moment includes a contribution
from the sideslip derivative CWwhich at high speeds can be
several times the magnitude of the moment due to C&—Clb.

(The roll &s becomes the& axis according to the convention
of this report, and the moments are apparent from equations
(8), (19), and (22) and the direction cosines for a yawing
oscillation from the appendix.) Experience with the analog
computing system, however, indicated that the accuracy of
the system was adequate for separating the damping deriva-
tives from the stiflnws derivatives by their difference in
phase, and that C%—Clj could be measured in the presence

of the larger moments due to Cl .

An expanded view of the ya3&ingoscillation mechanism
which incorporate a cross-torque gage for measuring
C,,–C,d is shown in figure 8. The z’, or cross-torque, rmis
lies along the longitudinal mtisof the model. A strain-gage
bridge for meaeuring EZ’was formed consisting of two legs
from each of the two unbended strain gages shown in the
photograph. Static tests showed that this gage wmmge-
ment eliminated interaction due to forces and moments
about all other roes. Subsequent wind-turd tests showed
that the lateraldirectional derivatives could be measured
through a wide range of angles of attack without the neces-
sity of trimming the pitctig moments. It was found that
operation was fairly smooth even at high speeds and angks
of attack near the stall. This improved performance was
attributed to the fact that there were only slight chang~ in

‘1

,

.,
~\

\.. . . .

‘paa5Emm ,
-— .-. . .. —-. ___ . .

FrmmE 8.—Expanded view of a later version of the oscillation meahw
nism for yawing or pitohing illustrating a more aatisfaotory method
for measuring the oross torque.
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FIGURE 9.—Revked version of the mechanism illustrated in figure 7 in
which the cross-torque gage has been eliminated.

effective rmgleof attack or lift on the wing during a yawing
oscillation compared with the larger chang~ encountered
during n pitching or rolling oscillation. This design thus
proved to be superior to that shown in figure 7, and, as a
result, the cross-torque gage and cross-torque restraint were
eliminated from the roll and yaw oscillator as shown in
figure 9.

The accuracy of the data obtained with this equipment
is believed to be sufficient for most dynamic stability calc-
ulations. Errors directly assignable to the computing system
are quite small, within 1 percent of the full-scale capacity
and 10 of arc in the phase angle. Tare damping caused by
friction and other internal effects in the model and mecha-
nism was measured prior to each run, but this measurement
was used primarily as an indication of trouble in the equip-
ment since it was normally less than 2 percent of the full-
scale capacity and was neglected in computing the deriva-
tives. The vibration character&tics of the sting and
supporting system introduced an additional possibili~. of
error which required careful study. Calculated vibration
characteristics of the support were used as a guide to evalu-
ate the test conditions under which support vibration might
affect the measured results, but these calculations were not
found to .be reliable because it was difiicult to properly
account for the various degrees of freedom of the supporting
structure. In some cases it was necessmy to attach guy
wires between the sting and the tunnel wall w prevent the
support system from vibrating at the model oscillation fre-
quency and thus introducing errors in the measurements.
In most tests, however, these objectionable frequencies were
avoided and the results were the same whether the guy
wires were attached to the sting or not. Through tests
with independent variations in Mach number and Reynolds
number, both of which affect the model oscillation frequency,
and with the guy wir~ on and off, it was established that
systematic errors due to model support vibration could be
eliminated within the random error of the measurements.

The probable random error in a single measurement aa
a percent of the full-scale damping capacity was found to
be less than 1% percent for both Cl; and U.; from an mml-

ysis of repeated measurements on a typical model for Mnch
numbers from 0.25 up to 0.94 at zero angle of attack. Tho
accuracy of measurement of a single derivative depends on
its relation to the maximum value of Cl!. Thus, for con-e
ventional airplane models the combined random and system-
atic uncertainty in a single damping derivative Ulp,0%— On~,

or CLq+Cnk would be of the order of 5 percent, with tho

cross derivatives, CXPand Cl,—Clj, being subject to the

same increment of certainty as Clv and On,—C~b.

EXPZZIMRNTALDATA

FigurM 10, 11, and 12 have been prepared to illustmto
the general scope of data obtainable with the oscillation
apparatus described. Thwe data were obtained at a low
Mach number for the model configuration illustrated in
figure 5. Similar data have been obtained at Mach numbms
up to 0.95.

The effects of oscillation amplitude and reduced frequency
at a selected angle of attack can be studied from measure-
ments of the type shown in figure 10. It is sometinm
desirable to measure only the effect of frequency or ampli-
tude on certsin combinations of derivatives, such as
Cm+ Cti—Clb in figure 10, since this can be done Ttithfe~ver

measurements. Thwe data ccdrm the assumption of line-
arity in the small oscillations of an airplane about an equi-
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FIGWRH 10.—The variation of some of the lateral stability derivatiws

with csoillation amplitude for two valuea of reduced frequency.
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FIGURE 11. The variation of the longitudinal stability derivatives with angle of attack.
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Iibrium position and indicate that the effects of frequency
on the stability derivatives are negligible for the test
conditions represented in figure 10.

Data of the type illustrated in figures “11 and 12 can be
used to establish the variation of the stability derivatives
with angle of attack for a mean oscillation amplitude and
frequency as this is the form most useful in dynamic stabili~
calculations. The data shown in figure 11, along with the
lift-curve slope, are the aerodynamic parametem of primary
importance in estimating the shorhperiod dynamic longi-
tudinal stabili~ of an aircraft with the control surfaces
tied. The short-period motion in this case is essentially a
pitching about the center of gravity combined with vertical
translation. The desirabili~ of experimentally separating
Cm&and Cm.and evaluating other derivatives which may
af?ect the longitudinal motion dependa on the circumstances
and on the prectilon required but, in general, the important
features of the motion can be estimated without these
additional aerodynamic parameters. In the stick-free -e,
a third degree of freedom is introduced by the elevator motion
about its hinge which may markedly affect the response of
the airplane and for which the aerodynamic contribution
of the free control surface would have to be considered (ref. 5).

Data of the type illustrated in @ure 12 can be used in
calculating the dynamic lateral stability of an airplane.
balysis of the lateral oscillatory motion with the controls
fixed is more complicated than in the longitudinal case
because of the three degrees of freedom-rolling, yawing,
and sideslipping. The aerodynamic paramei%m required,

in addition

CnB, per deg

to those shown in figures 12 (a) and (b), are the
side-force coefficients due to~olling velocity, yawing velocity,
and sideslip (ref. 6). The side force due to sideslip can bo
measured or estimated from steady-flight considerations
alone. Measured values of the side forces due to rolling
veloci~ and yawing velocity would be desirable, but in
many cases these forces are small or can be shown to havo
negligible effect on the motion (ref. 7). Here again, as in
the case of the short-period longitudinal motion, free-control
surfaces may radically alter the aircraft response (ref. 6).

Many of the suggested methods for calculating dynamic
lateral stabili~ (e. g., refs. 6J6, and 7) do not consider the
effects of sideslip velocity P because, for typical airplane
configurations used in the past, these efFects have been
shown to be small (ref. 3). This may, however, not be the
case for current and future airplane types. The effects of
C,a and Cnbon the lateral oscillatory motion can be appro.u-
mated by introducing the terms Cz~—Ul~ and ~%—(YXA

into the equations of motion (ref. 6) in place of (?Z,and C=,.
This would indicate that, in the absence of independent
measurements of Cl~and Czh,it would be desirable to obtain
WbkS of Cl,—Clb and C>— 0S4 from oscillation testa sinco

this would approximately account for the possible eIT’ects
of sideslip veIoci~ in stabili~ calculations.

ha AERONAUTICAL l&IORATORY,

NATIONAL ADWSORY COMMImEE FOR AERONAUTICS,
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APPENDIX

General methods are available for evaluating the direction
cosines for an arbitrary rotation of one system of mes with
respect to another. (See, e. g., ref. 8.) In the present
case it would be most useful if the direction cosines were
evaluated in terms of the angles ~ and Aillustrated in figure 2.
The angle q represents the mechanical angle by which the
axis of the crossed flexures is offset horn the longitudinal
axis of the sting and Ais determined by keying the oscillation
apparatus to the sting in the proper rotational position.
The direction cosines used in equations (17) through (22) then
become

A=cos ct. COS q–SiIl cimsillq COS ~

B=sinqsinh

c= – (sin% cos ~+cos amsin q cos X)

D= Sinamsin A

E=cos h

P=sin A Cosam

Q=COS am Sillq+sin a. COSq COsA

E=–sin h CQsq

J=–sin a. sin ~+c.os a. cos q cos h

(39)

In the case of the velocity derivatives, a considerable
simplification in the direction cosines can be obtained by
referring them to a set of model axes which coincide with the
stability axes at zero angle of attack. The velocity deriva-
tive are then evaluated first about model axes for all w@es
of attack and then transformed to stability axes.

Inserting am=O in the above expression for the direction
cosines results in the following values for the tests discussed
herein, where the double primes refer to model axes:

‘itohing

90°
90°

0

1

0

----
----
----
----
----
----

Type of motion

Yawing

90°
0

0

0

–1

----
----
----

:
0

R;l(&g

>ituhing

45°
90°

$

$

0

0
0
1

----
----
----

I
ROlol Roying

yawing yW&

45° 45°
180° 0

2
0

1
$=

----
----
----
----
----
----

1~
,12

0

—=
412

----
----
----
----
----
----

Use of these values for the direction cosines resulted in the
determination of the velocity derivatives about model ares,
using equation (17), (18), or (19), as explained in tbe section
on Description of Apparatus: The transformation from
model axes ta stability axes was made with the following
equations where the doubl~primed coethcients refer to model
axes

( )C,,=C~ COS2G+ C~,–CJb sin’%+
P

(40)

J

The displacement derivatives C==, CW, and CJBWae not
evaluated by the above procedure as there was no computa-

tional advantage in this case. Equatiom (17) through (22)
are developed about stabdi~ axea for which p= —~ and
a=e. The use of these same relations for the model axes
system depends on the presence in equations (17) though
(19) of the terms due to rolling veloci~ and the advantage in
using the model axes system is that thereby certain terms are
eliminated in the equations and simple solutions obtained for
all angles of attack. On the other hand, the use of this
relation for the displacement derk%tives would require the
introduction of corresponding terms due to roll deflection
about model axes. It can be shown that when these terms
are introduced, the resulting equations are as di.flicultfrom
the computing standpoint as the direct evaluation of the
displacement derivatives about stability axes; therefore, in
evaluating the displacement derivatives Cm=,CW, and CZP,
equation (20) and the direction cosines for the stability
system of axes, equation (39), were used.

It is important to note the d.iffenmce between the model
axes system used for equation (40) and the system of body
axes used in many stabili~ calculations. The orientation of
the two systems of axea coincidw but with the body axes
system the sideslip angle/3 is defined as the angle between the
relative wind and the plane of symmetry in the same mmner
as with the stability axes. With the approximations sin
a=u, cos u= 1, the sideslip angle referred to body axes
would become

/3=-+” C(3S~+p” sin ~

+-(?” cos G+A” sin @u
177

IThJsmodemcdonlyh earIykits(w3@. 7).
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This value for ~ could be inserted in equations (11), (13), and
subsequent equations which would lead to modifications of
equations (17) through (22) and these new equations would
then represaut the stability derivative referred to body
ases. Therefore, while there are mmy similarities ~-”the
two systems, the model mws system used in equatioB (4o) is
not a true system of body axes and should be considered only
as a computational aid.
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